149 research outputs found

    Systematically extending classical nucleation theory

    Full text link
    The foundation for any discussion of first-order phse transitions is Classical Nucleation Theory(CNT). CNT, developed in the first half of the twentieth century, is based on a number of heuristically plausible assumtptions and the majority of theoretical work on nucleation is devoted to refining or extending these ideas. Ideally, one would like to derive CNT from a more fundamental description of nucleation so that its extension, development and refinement could be developed systematically. In this paper, such a development is described based on a previously established (Lutsko, JCP 136:034509, 2012 ) connection between Classical Nucleation Theory and fluctuating hydrodynamics. Here, this connection is described without the need for artificial assumtions such as spherical symmetry. The results are illustrated by application to CNT with moving clusters (a long-standing problem in the literature) and the constructrion of CNT for ellipsoidal clusters

    Nonlinear diffusion from Einstein's master equation

    Full text link
    We generalize Einstein's master equation for random walk processes by considering that the probability for a particle at position rr to make a jump of length jj lattice sites, Pj(r)P_j(r) is a functional of the particle distribution function f(r,t)f(r,t). By multiscale expansion, we obtain a generalized advection-diffusion equation. We show that the power law Pj(r)f(r)α1P_j(r) \propto f(r)^{\alpha - 1} (with α>1\alpha > 1) follows from the requirement that the generalized equation admits of scaling solutions (f(r;t)=tγϕ(r/tγ) f(r;t) = t^{-\gamma}\phi (r/t^{\gamma}) ). The solutions have a qq-exponential form and are found to be in agreement with the results of Monte-Carlo simulations, so providing a microscopic basis validating the nonlinear diffusion equation. Although its hydrodynamic limit is equivalent to the phenomenological porous media equation, there are extra terms which, in general, cannot be neglected as evidenced by the Monte-Carlo computations.}Comment: 7 pages incl. 3 fig

    A microscopic approach to nonlinear Reaction-Diffusion: the case of morphogen gradient formation

    Full text link
    We develop a microscopic theory for reaction-difusion (R-D) processes based on a generalization of Einstein's master equation with a reactive term and we show how the mean field formulation leads to a generalized R-D equation with non-classical solutions. For the nn-th order annihilation reaction A+A+A+...+A0A+A+A+...+A\rightarrow 0, we obtain a nonlinear reaction-diffusion equation for which we discuss scaling and non-scaling formulations. We find steady states with either solutions exhibiting long range power law behavior (for n>αn>\alpha) showing the relative dominance of sub-diffusion over reaction effects in constrained systems, or conversely solutions (for n<α<n+1n<\alpha<n+1) with finite support of the concentration distribution describing situations where diffusion is slow and extinction is fast. Theoretical results are compared with experimental data for morphogen gradient formation.Comment: Article, 10 pages, 5 figure

    Nucleation of colloids and macromolecules: does the nucleation pathway matter?

    Full text link
    A recent description of diffusion-limited nucleation based on fluctuating hydrodynamics that extends classical nucleation theory predicts a very non-classical two-step scenario whereby nucleation is most likely to occur in spatially-extended, low-amplitude density fluctuations. In this paper, it is shown how the formalism can be used to determine the maximum probability of observing \emph{any} proposed nucleation pathway, thus allowing one to address the question as to their relative likelihood, including of the newly proposed pathway compared to classical scenarios. Calculations are presented for the nucleation of high-concentration bubbles in a low-concentration solution of globular proteins and it is found that the relative probabilities (new theory compared to classical result) for reaching a critical nucleus containing NcN_c molecules scales as eNc/3e^{-N_c/3} thus indicating that for all but the smallest nuclei, the classical scenario is extremely unlikely.Comment: 7 pages, 5 figure

    The effect of the range of interaction on the phase diagram of a globular protein

    Full text link
    Thermodynamic perturbation theory is applied to the model of globular proteins studied by ten Wolde and Frenkel (Science 277, pg. 1976) using computer simulation. It is found that the reported phase diagrams are accurately reproduced. The calculations show how the phase diagram can be tuned as a function of the lengthscale of the potential.Comment: 20 pages, 5 figure

    Phase behavior of a confined nano-droplet in the grand-canonical ensemble: the reverse liquid-vapor transition

    Full text link
    The equilibrium density distribution and thermodynamic properties of a Lennard-Jones fluid confined to nano-sized spherical cavities at constant chemical potential was determined using Monte Carlo simulations. The results describe both a single cavity with semipermeable walls as well as a collection of closed cavities formed at constant chemical potential. The results are compared to calculations using classical Density Functional Theory (DFT). It is found that the DFT calculations give a quantitatively accurate description of the pressure and structure of the fluid. Both theory and simulation show the presence of a ``reverse'' liquid-vapor transition whereby the equilibrium state is a liquid at large volumes but becomes a vapor at small volumes.Comment: 13 pages, 8 figures, to appear in J. Phys. : Cond. Mat

    Stability of Uniform Shear Flow

    Full text link
    The stability of idealized shear flow at long wavelengths is studied in detail. A hydrodynamic analysis at the level of the Navier-Stokes equation for small shear rates is given to identify the origin and universality of an instability at any finite shear rate for sufficiently long wavelength perturbations. The analysis is extended to larger shear rates using a low density model kinetic equation. Direct Monte Carlo Simulation of this equation is computed with a hydrodynamic description including non Newtonian rheological effects. The hydrodynamic description of the instability is in good agreement with the direct Monte Carlo simulation for t<50t0t < 50t_0, where t0t_0 is the mean free time. Longer time simulations up to 2000t02000t_0 are used to identify the asymptotic state as a spatially non-uniform quasi-stationary state. Finally, preliminary results from molecular dynamics simulation showing the instability are presented and discussed.Comment: 25 pages, 9 figures (Fig.8 is available on request) RevTeX, submitted to Phys. Rev.

    The low-density/high-density liquid phase transition for model globular proteins

    Full text link
    The effect of molecule size (excluded volume) and the range of interaction on the surface tension, phase diagram and nucleation properties of a model globular protein is investigated using a combinations of Monte Carlo simulations and finite temperature classical Density Functional Theory calculations. We use a parametrized potential that can vary smoothly from the standard Lennard-Jones interaction characteristic of simple fluids, to the ten Wolde-Frenkel model for the effective interaction of globular proteins in solution. We find that the large excluded volume characteristic of large macromolecules such as proteins is the dominant effect in determining the liquid-vapor surface tension and nucleation properties. The variation of the range of the potential only appears important in the case of small excluded volumes such as for simple fluids. The DFT calculations are then used to study homogeneous nucleation of the high-density phase from the low-density phase including the nucleation barriers, nucleation pathways and the rate. It is found that the nucleation barriers are typically only a few kBTk_{B}T and that the nucleation rates substantially higher than would be predicted by Classical Nucleation Theory.Comment: To appear in Langmui

    Diffusion in a Granular Fluid - Simulation

    Full text link
    The linear response description for impurity diffusion in a granular fluid undergoing homogeneous cooling is developed in the preceeding paper. The formally exact Einstein and Green-Kubo expressions for the self-diffusion coefficient are evaluated there from an approximation to the velocity autocorrelation function. These results are compared here to those from molecular dynamics simulations over a wide range of density and inelasticity, for the particular case of self-diffusion. It is found that the approximate theory is in good agreement with simulation data up to moderate densities and degrees of inelasticity. At higher density, the effects of inelasticity are stronger, leading to a significant enhancement of the diffusion coefficient over its value for elastic collisions. Possible explanations associated with an unstable long wavelength shear mode are explored, including the effects of strong fluctuations and mode coupling

    Density functional theory of inhomogeneous liquids. I. The liquid-vapor interface in Lennard-Jones fluids

    Full text link
    A simple model is proposed for the direct correlation function (DCF) for simple fluids consisting of a hard-core contribution, a simple parametrized core correction, and a mean-field tail. The model requires as input only the free energy of the homogeneous fluid, obtained, e.g., from thermodynamic perturbation theory. Comparison to the DCF obtained from simulation of a Lennard-Jones fluid shows this to be a surprisingly good approximation for a wide range of densities. The model is used to construct a density functional theory for inhomogeneous fluids which is applied to the problem of calculating the surface tension of the liquid-vapor interface. The numerical values found are in good agreement with simulation
    corecore